\text{rate}_{\text{product}} = \text{rate}_{\text{reactant}} \cdot \frac{\text{coefficient of reactant}}{\text{coefficient of product}}
\(\text{rate}_{\text{product}} = \text{rate}_{\text{reactant}} \cdot \frac{\text{coefficient of product}}{\text{coefficient of reactant}}\)
rate = - \left( \frac{\Delta O_2}{\Delta t} \right) = -+ \left( \frac{\Delta O_2}{\Delta t} \right)
\(rate = - \left( \frac{\Delta O_2}{\Delta t} \right) = + \left( \frac{\Delta O_2}{\Delta t} \right)\)
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
\(\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}\)
k=\frac{\left(+\frac{1}{c} \frac{\Delta[\mathrm{C}])}{\Delta \mathrm{t}}\right)}{[A]^x[B]^y}
\(k=\frac{\left(+\frac{1}{c} \frac{\Delta[\mathrm{C}])}{\Delta \mathrm{t}}\right)}{[A]^x[B]^y}\)
\(\)
\(\)
Written with StackEdit.