\text{rate}_{\text{product}} = \text{rate}_{\text{reactant}} \cdot \frac{\text{coefficient of reactant}}{\text{coefficient of product}}

\(\text{rate}_{\text{product}} = \text{rate}_{\text{reactant}} \cdot \frac{\text{coefficient of product}}{\text{coefficient of reactant}}\)


rate = - \left( \frac{\Delta O_2}{\Delta t} \right) = -+ \left( \frac{\Delta O_2}{\Delta t} \right)

\(rate = - \left( \frac{\Delta O_2}{\Delta t} \right) = + \left( \frac{\Delta O_2}{\Delta t} \right)\)


\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}

\(\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}\)


k=\frac{\left(+\frac{1}{c} \frac{\Delta[\mathrm{C}])}{\Delta \mathrm{t}}\right)}{[A]^x[B]^y}

\(k=\frac{\left(+\frac{1}{c} \frac{\Delta[\mathrm{C}])}{\Delta \mathrm{t}}\right)}{[A]^x[B]^y}\)


\(\)


\(\)


Written with StackEdit.